

Would peak electric demand management reduce carbon emissions?

Ajit Pardasani
Senior Research Officer
National Research Council Canada
Ajit.Pardasani@nrc.gc.ca

Objectives

- Smart grid control strategies to shift peak demand for dwellings that use electricity for space heating
- Characteristics of buildings and occupants that affect demand shift
- Smart grid control strategies as a mean to reduce carbon emissions

National Research Council Canada (NRC) - Overview

Three key roles:

- 1. Business innovation
- 2. Federal policy mandates
- 3. Advancing knowledge
 - 3,700 scientists, engineers, technicians, and technology advisors
 - Manages 178 buildings in 72 locations
 - >\$1B annual expenditure

Construction Research Centre

 >200 people working on Codes, Civil Engineering, Fire, Building Envelope, and Building Systems & Indoor Environment

In 2018 we worked with:

- 7,500+ SMEs (advice)
- 3,400 SMEs (funding)
- 1,000 companies (R&D collaborations)
- 152 hospitals
- 72 colleges and universities
- 34 federal departments
- 39 provincial/municipal governments
- 36 countries

High Performance Buildings Program

Goal: enable commercial & institutional buildings to generate more energy than they consume

Dynamic Building Envelope

Vacuum and advanced insulation Curtain walls with dynamic glazing technologies Advanced roofing with integrated & durable renewables

Smart building environmental controls

Wireless-based environmental control systems LED-based lighting control & market acceptance Plug load control & personal consumption monitoring

Connect smart buildings to grid

Remote auditing & vertical benchmarking
Energy usage and system prognostics
Energy management with Smart Grid interface
Renewables & storage integration
ROI-based retrofit decision support tools

The National Master Specification (NMS)

Canada's most comprehensive master specification
Approximately 750 specs in both official languages

Distributed Energy Resources

Distributed Energy Resource (DER)

DER is an electric supply source interconnected to the electric grid that fulfils one of the following criteria

- Generates electricity
- Store electricity and can supply electricity to the grid
- Involves load changes in response to price or other inducements

Connected DER refers to renewable generation sources embedded in the distribution system

Distributed Energy Resources

Electricity Generation in New Brunswick

NB Power operates a total of 13 hydro, nuclear, coal, oil, and diesel powered stations:

- 705 MW Point Lepreau Nuclear Generating Station
- 450 MW Belledune coal-fired plant
 - ✓ Coal to be eliminated by 2030

Electricity (2016) consumption by sector:

- Residential: 5.6 TW.h.
- Industrial: 4.6 TW.h
- Commercial: 3.0 TW.h.

Electricity generation contributes about 31 per cent of New Brunswick's total GHG emissions as compared to 10.9% of national average.

Source: Canada Energy Regulator https://www.cer-rec.gc.ca/nrg/ntgrtd/mrkt/nrgsstmprfls/nb-eng.html

New Brunswick: Twin Peaks Problem!

- Most dwellings use electric baseboards for space heating
- 3100 MW peak demand only for a few hours on a few days of the year
- Looking for ~600 MW reduction in demand by 2042 to avoid capital investments with retirement of older plants

Demand Response Pilot Studies in Canada – Electric Heating Focus

Helita Badadia Hadisa Carala Cita Badadian			
Utility	Type of Electric Heating	Sample Size	Peak Reduction
Quebec Hydro	50% central heating, and	50 homes of Hydro-	
	50% baseboard heating	Quebec employees	
	Smart Thermostat Pilot with	30 homes of Hydro-	2kW of load shift for
	ASE Energy and Sinope	Quebec employees	homes with 10 SLVT
			and 1 kW with 4 SLVT
BC Hydro	Baseboard heaters	22 homes	500 W – 1 kW
Vancouver Island		(2016-17)	5 SLVT
Fortis, BC	Electric HP and furnaces	100	
Manitoba Hydro	Electric heating	88 homes	energy efficiency focus
NB Power	 Baseboard Heaters Mini-split HP with b/b Baseboard with secondary heat 	50 homes (2015-16) 600 homes (2016-17)	 2 kW for b/b heated homes 1 kW for mini-split HP 4-6 SLVT

Evaluation of Smart Grid based Control to Shift Peak Demand: Pilot Goals

Reduction of Peak Power (kW)

Shift in Energy (kWh) / Energy penalty

Occupant comfort

Characteristics of homes for load shifting

Customer acceptance of technology

Goal

To evaluate the potential of smart thermostat set point strategies to shift the peak demand for electric baseboard heated homes.

Pilot Overview - 3 years (2014-17)

Twin Test Houses
Research

2014-15

Evaluated shift potential

Canadian Centre for Housing Technologies, Ottawa, Ontario

Pilot Study Demonstration

2015-16

Evaluated load shift and occupant comfort in detached homes

Fredericton, N.B..

Program Pilot Scale up

2016-17

Evaluated load shift and comfort for a variety of heating systems

Three Cities: Fredericton, Moncton and Saint John, N.B.

Electrical Thermal Storage Enabled by OpenADR Thermostats

The Solution: Thermal storage of electrical energy (Treating building fabric similar to a thermal battery)

- 1. Store electricity as thermal energy by pre-heating the building by 1° or 2° Celsius above the pre-programmed temperature set point before the onset of system peak
- 2. Discharge the stored energy during the peak period

567-HOME DEMAND CONTROL PILOT STUDY

2016-17

Study Parameters – home profiles

HEATING SYSTEMS VINTAGE 8.6 kW **Electric Baseboard Heaters** 1946-1983 **Average Connected Load** Baseboard + Backup Heat 1984-2000 (e.g. Fireplace) 57% 2001 or later Mini Split Heat Pump with baseboard backup 15 kW **Average Total Capacity**

Study Parameters – Measurement Data

Study Parameters – 3 Variants of DR Interventions

A total of 12 DR interventions with three variants were executed between January and March, 2017

- Thermal Charge (preheat): 5 AM 7AM by +1° or +2° Celsius
- Thermal Discharge: 7 AM 9 AM by -1° Celsius

OpenADR Control of Smart Line Voltage Thermostats

Study Design – Measurement & Verification

Energy Data

- Thermostat telemetry (5 min)
- Electricity usage (1 min)
- Weather (60 min)

Building

Characteristics

- Type of dwelling
- Type of heating system
- Nominal heating capacity (kW)

Participant Surveys

- Noticed event?
- Daily Schedule?
- Usual habits?
- Experienced

ANALYSIS

Calculate Load Shift

(using regression analysis)

- First 30 Min
- First Hour
- Full Period

Analyze Dependencies

- Demographics
- Thermostat set points
- Building characteristics

Baseline vs. DR Day: Comparing Load Profiles

Study Results – Load Shift by Heating System

Study Participant Surveys

Surveys designed, administered and analysed by NRC:

- > Survey 1
 - Household demographics
 - Baseline thermal comfort, clothing insulation, preferred thermostat settings
 - Personal values
- > Survey 2-6 (after DR interventions)
 - Thermal comfort, awareness of interventions, comments
- > Survey 7 (at the end of the study)
 - Satisfaction with the thermostats and pilot study

Key Findings

Load shift not dependent on: vintage, house type, # occupants, age of occupants, window orientation, income, or personal values

Load shift dependent on pre-existing thermostat set point profile

No thermal comfort issues reported

No measured rebound effect

No evidence of energy penalty

Very high satisfaction with thermostats and program

Avg. GHG Intensity of Generation (g CO₂/kWh) in Canada

Conclusions

- Preheating curtails peak electrical heating load without adverse effects on occupant thermal comfort
- A low preheat of 1°C (1.8°F) delivered meaningful load reduction with lower risk of thermal discomfort
- Houses with certain characteristics deliver bigger load shifts
- Reduction in carbon emissions will depend on the generation mix at the time of demand response

Project Team

NRC	NB Power	Siemens
Ajit Pardasani Anca Galasiu Chantal Arsenault Guy Newsham Heather Knudsen Jennifer Veitch Sandra Mancini Steve Kruithof Trevor Nightingale Vera Hu	Jill Rogers, Norma McCarthy Sara Mudge Ted Leopkey Trupti Abhang Customer Care Team Reduce and Shift Demand Team	Brody Hanson Giles Counsell Greg Robarts Sonya Hull Terrance Cormier DRMS Team

References

Pardasani, A., Armstrong, M., Newsham, G.R., Hanson, B., "Intelligent Management of Baseboard Heaters to Level Peak Demand", 2016 IEEE Electrical Power and Energy Conference, Ottawa, Canada, 12-14 October 2016, pp. 1-6

Pardasani, A, Veitch J.A, Newsham, G.R., Hu, Y., Cormier, T., Hull, S,. "Demand Control of Baseboard Heaters: Lessons Learned from 50-home Pilot Study." 2018 IEEE Electrical Power and Energy Conference (EPEC) (2018): 1-6.

Pardasani, A., Veitch, J.A., Hu, Y., and Newsham, G.R., "Demand Control of Baseboard Heaters Using Connected Thermostats: Lessons Learned from 567-Homes Pilot Study", 2020 ASHRAE Winter Conference, Orlando, Feb 1-5 2020

THANK YOU

Ajit Pardasani

Senior Research Officer, National Research Council Canada

Ajit.Pardasani@nrc-cnrc.gc.ca

